RSS

Tag Archives: switch

Maker-First steps in electronics-The moving, rotating and lighting Mini-Brush

Maker-First steps in electronics-The moving, rotating and lighting Mini-Brush

.

The moving, rotating and lighting Mini-Brush

.


The moving, rotating and lighting Mini-Brush

In OUR previous electronics projects WE were tinkering around with vibration motors and flashing LEDs, well we will continue on the same schema to get a bit more soldering practice and to discover ALSO the use of heat shrink tube, accumulators and drinking straws. This is ALSO a soldering exercise with some fun, and knowledge acquirement as usually in my tutorials. WE will learn also about accumulators, rechargeable batteries. Using accumulators instead of batteries will save us a lot of money and it is ALSO providing LESS RECYCLING! 😉 WE do something GOOD for the nature <===> Sustainability!!


OHM’s Law, resistors and LEDs

.

led-symbols

.

As WE are using a 9 Volts accumulator (rechargeable battery) this time together with a LED, WE need to put a resistor in series to the LED to protect it.As

Learn more:

.

.

led-symbols-anode-and-cathode.

.

Practical Tip: LEDs are transparent, so the Cathode (Minus) looks always a bit larger as the Anode (Plus).

.

.

.

When working with electronics WE need to learn a bit theory and mathematics, BUT DON’T worry, it is very easy! First of all which is mandatory, is the “OHM’s Law“. YOU DON’T need to calculate! 😉 There is an online calculator who will do the job for YOU! Click the image below please to access the online calculator and play a bit around with it to get used to it, have fun.

..

ohms-law-calculator

Click the image please to access the online calculator

.

Let us make OUR calculation for the resistor: WE have a power supply of 9 Volts and the used LED has a maximum of 3 Volts while its current is 20 mA (milli Ampere). Thus meaning: 9 Volts – 3 Volts is 6 Volts which need to get dropped away from the LED to NOT destroy it! SO, on the resistor 6 Volts need to get derived away from the LED. Let us NOW convert the 6 Volts to milli Volts which gives us 6,000 mV. AND as R = U/I <===> 6,000 divided by 20 is 300! The resistor MUST have a value of 300 Ω, next standard value is 330 Ω!

WHEN YOU use the above online calculator YOU SHOULD give the values in VOLT and in Ampere; or WE have 20 mA which is 0,020 A. Check the online calculator below please:

.

resistor-calculating-for-leds

.

Useful online help:

.


WHAT are accumulators and WHAT’S different from batteries?

Please read the below articles to understand:

 

.


The schematics of our project

Here below the schematics where YOU will see how the components are represented; ONLY five (5) parts.

.

moving-rotating-lighting-mini-brush-schematics-screenshot

.


 Detailed parts list, supplier and prices

Please find below the detailed parts list as well as the supplier and the prices.

.

Item and quantity

Supplier and order number

Price

1 x Mini-Brush CACTUS (Supermarket) 2,50€
 A bit heatshrink tube 0,50€ 
1 x Switch CONRAD: 701351-62 1,09€
1 x 9 Volts accumulator CONRAD: 251290 – 62   11,99€

1 x 9 Volts Motor from Adafruit

 Adafruit: ID 711

 1,84€
1 x 5mm flashing LEDs from Adafruit pack of 10 is $4.95 Adafruit: ID 680 0,50 €
 Just for fun: a plastic mouse CACTUS (Supermarket) 5€
 Total:  without the plastic mouse 18,42€ 
with plastic mouse  23,42€ 

.

As you can see it is a very cheap project, ONLY 18,42€ and easy to realize! ALL what YOU need is a bit time, passion and here we GO! 😉 Have FUN!

Online ordering links:


The tools needed

Check below please WHAT the tools are that you will need for this project. The small saw is needed to cut off the handle of the mini brush.

.

tools-list-electronic-arts

Click image please to enlarge.

.


Working with heat shrink tube

[START text from Wikipedia] Heat shrink tubing (or, commonly, heat shrink or heatshrink) is a shrinkable plastic tube used to insulate wires, providing abrasion resistance and environmental protection for stranded and solid wire conductors, connections, joints and terminals in electrical work. It can also be used to repair the insulation on wires or to bundle them together, to protect wires or small parts from minor abrasion, and to create cable entry seals, offering environmental sealing protection. Heat shrink tubing is ordinarily made of nylon or polyolefin, which shrinks radially (but not longitudinally) when heated, to between one-half and one-sixth of its diameter. [END text from Wikipedia]

Learn more:

Watch the video below please to see the How-To to work with heat shrink tube.

.

.


Optimizing the design

I first started to make a normal cabling and the mess I saw didn’t make me feel proud and comfortable, there was something embarrassing! I looked around on my working bench and I discovered some drinking straws which I bought (can’t remember for what, bought them as I was feeling to do so…). I took one and was plying it and suddenly the idea was there to hide the cables inside and WHY NOT to incorporate a super bright LED: the idea was born 😉

The moving, rotating and lighting Mini-Brush 

.


 

The video of our project

Check the video below please:

 

.

.

.

Keywords necessary for me to create this blog post: instant glue, hot glue, 9 Volts Mini-Motor, resistors in series for LEDs, LED, switch, schematics, drinking straws, unbalance, hexagonal nut, hiding cables in drinking straw (Design Thinking), creativity, accumulators and batteries (difference), …

.

.

GUST-AVRIL2014-800px-2L’auteur Gust MEES est Formateur andragogique / pédagogique TIC, membre du “Comité Conseil” de “Luxembourg Safer Internet” (LuSI), appelé maintenant BEESECURE, partenaire officiel (consultant) du Ministère de l’éducation au Luxembourg du projet  ”MySecureIT“, partenaire officiel du Ministère du Commerce au Luxembourg du projet ”CASES” (Cyberworld Awareness and Security Enhancement Structure). L’auteur était aussi gagnant d’un concours en électronique en 1979 ( Pays germaniques ) et voyait son projet publié dans le magazine électronique “ELO”.


The author Gust MEES is ICT Course Instructor, ”Member of the Advisory Board” from “Luxembourg Safer Internet” (LuSI), BEESECURE, Official Partner (Consultant) from the Ministry of Education in Luxembourg, project “MySecureIT“, Official Partner from the Ministry of Commerce in Luxembourg, project “CASES” (Cyberworld Awareness and Security Enhancement Structure).

The author was also a winner of an electronics contest (Germanic countries) in 1979 and got his project published in the “Electronics Magazine ELO”).

.

Stay tuned for next blog post(s) 😉

..

.

 

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Maker-First Steps in Electronics-The rotating and moving plastic container

Maker-First Steps in Electronics-The rotating and moving plastic container

.

Rotating and moving plastic container

 

.


The rotating and moving plastic container

Half Square Nut as unbalance

Click image please to enlarge.

.

In previous blog post (tutorial) WE used a vibration motor from an old smartphone and we were learning also about the How-To about a vibration motor is working; it is about “Unbalance“. This unbalance is normally unwanted for motors, but for vibration motors it is a MUST. The motor we used was a 3 Volts motor and very small. In THIS NEW project we will use a 9 Volts DC-Motor and we will create from a normal motor a vibration motor with a little trick.

.

.

..

.

 

Square Nut

Click image please to enlarge.

.

.

.

We will use a square nut and saw it in the middle, then taking the hot glue pistol and gluing it (one half) on the shaft of the 9 Volts DC-Motor.

.

.

.

.

Learn more:

9 Volts DC Motors are actually very cheap, check below please:

.

 

 


Let us have a look on the unbalance and vibrations motors

A vibrating motor is essentially a motor that is improperly balanced. In other words, there is an off-centered weight attached to the motor’s rotational shaft that causes the motor to wobble. The amount of wobble can be changed by the amount of weight that you attach, the weight’s distance from the shaft, and the speed at which the motor spins.

Learn more:

 

.

.

vibration-motor

Click image please to access the article.

.


The schematics

Let us first have a look on the schematics where WE will discover some NEW stuff, a mini motor; in this case it is an “vibration motor“.

.

moving-plastic-containe-schematics

Click image please to enlarge

.

VELCRO.

.

As you can see there is NOTHING special; we just put five (5) elements (4 flashing LEDS, a vibration motor) in parallel. The motor will get fixed with hot glue on the bottom. And we have a switch to switch on/off our circuit. As battery we use a 9 Volts battery which will get fixed with “VELCRO” on the bottom.

.

.

.

Learn more:

Calculating the resistor value with a 9 Volts battery and knowing that the flashing LEDs will be 3 Volts and consuming 20 mA. SO: 9-3=6 Volts which will get needed to take away from the LEDs. Check below please:

.

led-series-resistor-calculator

.

The shown value is 300 Ohms, but that is NOT a standard value. We will use a 330 Ohm resistor, as it is a standard value.

Useful online help:

 


The tools needed

Check below please WHAT the tools are that you will need for this project. The small saw is needed to cut out a small piece of 55 x 45 mm from the stripboard. That part is needed for soldering the resistor and the switch and is used to make the necessary connections to the other parts.

 

 

tools-list-electronic-arts

Click image please to enlarge.

.

steinel-neo1-hot-glue-pistol.

.

.

Concerning the hot-glue pistol which you need as well, I recommend the one from “STEINEL” as it is a Cordless all-purpose glue applicator. Neat, practical, accurate. Cordless hot-melt glue pen neo1 for all gluing jobs around the home, particularly lightweight and practical, cordless gluing with rechargeable Li-Ion battery, ready for gluing in 15 sec.

.

.

 

Learn more:

The price is around 35€, but worth to spend that money, comfortable precise working…

 


The Parts List

As mostly usual in my tutorials, WE will create on the beginning ONLY small stuff with some effects and a little bit of theory to give YOU the fun and the sense for electronics. SO, in this project there also ONLY a few components, such as: 9 Volts DC-Motor, Flashing LEDs, 1 resistor, 1 switch, a 9 Volts Battery, a plastic container (actually a Ricotta Cheese plastic container).

.

Item and quantity

Supplier and order number

Price

1 x Stripboard CONRAD: 529531 2,19€
VELCRO tape  +/- 10 cm needed à 16,99€/1 m CONRAD: 546887  1,70€

1 x Empty plastic container +/- 10 cm diameter

1 x Switch CONRAD: 1377837 2,19€
1 x 9 Volts battery CONRAD: 658014  3,99€

1 x 9 Volt Battery Clip

 CONRAD: 624691

 0,44€
4 x 5mm flashing LEDs pack of 10 is $4.95 ADAFRUIT: ID 680 2,40€
1 x Flat Bandcable CONRAD: 604069  0,30€

1 x 9 Volts DC-Motor

 ADAFRUIT: ID711 1,95 
 1 x Resistor 330 Ohm

4 x LED clips 5 mm 100 pces is 9,99€

 CONRAD: 405191

CONRAD: 185806

0,10€ 

0,40€

 TOTAL: 15,66€ 

.

As you can see it is a very cheap project, ONLY 15,66€ and easy to realize! ALL what YOU need is a bit time, passion and here we GO! 😉 Have FUN!

.


The video of the project

Please check the video below to see it in action.

.

.


.

GUST-AVRIL2014-800px-2L’auteur Gust MEES est Formateur andragogique / pédagogique TIC, membre du “Comité Conseil” de “Luxembourg Safer Internet” (LuSI), appelé maintenant BEESECURE, partenaire officiel (consultant) du Ministère de l’éducation au Luxembourg du projet  ”MySecureIT“, partenaire officiel du Ministère du Commerce au Luxembourg du projet ”CASES” (Cyberworld Awareness and Security Enhancement Structure). L’auteur était aussi gagnant d’un concours en électronique en 1979 ( Pays germaniques ) et voyait son projet publié dans le magazine électronique “ELO”.


The author Gust MEES is ICT Course Instructor, ”Member of the Advisory Board” from “Luxembourg Safer Internet” (LuSI), BEESECURE, Official Partner (Consultant) from the Ministry of Education in Luxembourg, project “MySecureIT“, Official Partner from the Ministry of Commerce in Luxembourg, project “CASES” (Cyberworld Awareness and Security Enhancement Structure).

The author was also a winner of an electronics contest (Germanic countries) in 1979 and got his project published in the “Electronics Magazine ELO”).

..

.

Keywords necessary for me to create this blog post: Bandkabel, Unbalance explication, DC Motors, vibration motors,

.

 

Stay tuned for next blog post(s) 😉

.

.

.

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Maker-First Steps in Electronics-Building a Power Supply

Maker-First Steps in Electronics-Building a Power Supply

.

dsc_0625

.


Building a Variable Power Supply With Few Components

Variable Power Supply-work in progress

Click the image please to enlarge

In previous tutorial Maker-First Steps in Electronics, the basics WE got a bit the PracTICE of soldering and WE learned ALSO about schematics, resistors, LEDs, diodes and OHM’s Law. WE used ALSO a 9 Volt battery as a power supply for our projects; BUT batteries are expensive (3,99 €) and when playing around a lot on experimenting WE would use a lot of them. This will certainly be the case as on the beginning while tinkering around, my personal experience, as one is curios and tries out everything. Which is good by the way, but better is to build a variable power supply for few money and for small projects like WE are working on.

SO, let us have a look on the schematic about WHAT WE will create next. WE will discover some NEW components, such as a voltage regulator integrated circuit (IC), a variable resistor (potentiometer), capacitors, electrolytic capacitors… which WE will learn more about as well in this tutorial.

WE had already the experience with a stripboard, which we will continue (on the beginning) to build our variable power supply. It will be a very easy one with ONLY 10 components to solder on the stripboard. The tension will be adjustable  by a potentiometer (variable resistor) from 0-24 Volts and a maximum current of 1 Ampere. WE will ALSO provide it with a switch so that we can ALSO use it as a Volt-Meter to measure the tensions on our strip-board projects…

WE will ALSO learn to drill and to rasp as WE will enclose our project into an enclosure; well mechanics are part as well when one tinkers with electronics 😉

WE will solder measure points on the strip-board as well. so we can learn about measuring and to understand what is going on when AC gets through a rectifier bridge and becomes DC…

.


Schematics

Electronic Schematics – Need-To-Know

BEST explication I have found and WHICH I agree!!! Electronic schematics are like recipes for electronics. They tell you what ingredients to use and how to mix the ingredients. But instead of using text to explain the recipe, a drawing is used.

Learn more:

Please check the schematics of OUR project below:

.

variable-power-supply-schematics-test-screenshot

.

The above schema was created with:

.

Fuse

fuse-schematics

Rectifier bridge

bridge-rectifier-schematics

Voltage Regulator

voltage-regulators

Transformer

transformer-schematics

Capacitors and Polarized Capacitors (Electrolytic Capacitors)

 

capacitors-schematics

Variable Resistor (Potentiometer)

potentiometer

potentiometer-schematics

Resistors

resistor-schematics 

 

 

 

.

Learn more:

.

.


The Components and the Parts List

Please check below the photo to get familiarized with the parts.

.

variable-power-supply-parts-list-photo

.

In above image WE see parts which we used already in first tutorial <===> Electronics Starter Kit for Makers <===> such as resistors, diodes  and the stripbord. NEW components are (please check the links below to learn more):

This time WE will ALSO need to use some tools and mechanical parts; well electronics without mechanics doesn’t exist 😉 Will get explained in a new tutorial…

.

List of online Electronics shops (mostly for Europe, but some are delivering ALSO global):

.


Detailed parts list, supplier and prices

Please find below the detailed parts list as well as the supplier and the prices.

.

Item and quantity

Supplier and order number

Price

1 x Transformer 230V/1A CONRAD: 710422 15,99€
1 x Bridge rectifier B40/C7000-4000 CONRAD: 501980  4,49€

2 x Electrolyte capacitor 1000uF/63V

CONRAD: 1472875 à 1,49€

 2,98€
1 x Diode 1N4007 CONRAD: 1262766 0,22€
1 x Resistor 100 Ω CONRAD: 405132  0,10€

1 x Potentiometer 4K7 Ω

CONRAD: 440778

1,99€

1 x Knob for potentiometer CONRAD: 715840 1,09€
1 x LM317T CONRAD: 176001  0,34€

1 x Capacitor MKS2-1uF/63V

CONRAD: 455318

1,49€
1 x Panel-Meter  CONRAD: 101950 35,99€
1 Heatsink for LM317T CONRAD: 183870  1,03€
1 x Mounting-Kit TO220 CONRAD: 155140 0,72€

1 x Stripboard

CONRAD: 529531

 2,19€
2 x PCB Connector 2 pins CONRAD: 1192188 à 0,28€ 0,56€ 
Total:  69,18€

.


Check out this video tutorial to understand

A GREAT video tutorial to watch for understanding about the used “Voltage Regulator Chip LM317T“:

.

.


First tests without the transformer

I propose to make the first test(s) without the transformer; by using a 9 Volts battery! This to make sure that there isn’t any mistake on the wiring as a short-circuit could cause damage!! Check photo below please:

.

Test with 9 Volts battery

Click image please to enlarge

 

Using a copy of the schematics and a pen to erase the done connections already; this allows to keep an eye on how far one is…

.

marking connections made

.


Safety FIRST as WE are working with 230 Volts!!

549px-iso_7010_w012-svgI will propose two different projects, one for NEWBIES and one for advanced users! NEWBIES will NOT solder the transformer on the stripboard, BUT will connect it to the stripboard by <===> Safety FIRST rules <===> and advanced users could solder it on the stripboard by respecting these Safety rules! WE will use ALSO heat-shrinking tubes to insulate ALL the components where 230 Volts is connected to assume that nobody could touch them to avoid electrical shock by touching!!!

Learn more about heat-shrinking tubes:

 

I am NOT the guy WHO follows any rules, BUT THESE ONE I follow myself ALSO as it is mandatory!! YOUR life and/or the life of OTHERS could be in danger if NOT followed!!! SO, take YOUR responsibility, please 😉 Well, enough blabla, let us have a look WHY:

Learn more:

Check photos below please:

.

Heat-shrinking tubes on transformer before shrinking

Click image please to enlarge.

.

Heat-shrinking tubes on transformer after shrinking

Click image please to enlarge

.

Let us protect and ALSO our workbench with a plastic underground (plastic is insulating…), check below please:

.

Protecting and insulating workbench

Click above image please to enlarge it.

.

Two different projects, one for NEWBIES and one for advanced users: thus meaning; NEWBIES will NOT solder the transformer on the stripboard, BUT fixing and connecting it apart! Advanced users will be able to solder the transformer on the stripboard by taking care of safety rules, check above image please for connected transformer on the stripboard and image below please for transformer connected with wires to the stripboard .

.

Transformer connected outside the stripboard

.


Building UP from the beginning a system for wiring

WE have two different possibilities for the wiring and connection of the components on the stripboard:

  1. Using really wiring with colored insulated wires
  2. Using ONLY the copper strips on the stripboard to make the connections
  3. OR using both as I did in above; one red colored wire was used to make a connection…

.

WHEN WE use the wiring with colored insulated wires, we need to have a system in it, let us define UP from the beginning which colors mean WHAT! I propose this:

  • Red for the “PLUS” of DC Power Supply
  • Blue for the “Minus” (Ground) of DC Power Supply
  • Green for the connections of AC
  • White or blank silver wire for bridges on the stripboard: connections from one component to the other…

.


List of free electronics circuit simulators

.

ltspice-tutorial-simulator

Click image please to access the video

Nowadays WE have the chance to profit from FREE Simulator software to examine the How-To circuits work, please find below some useful links:

 

Please check below for useful articles on Software:

.

Learn more:


Next steps to come

Well, first build the above and finish it! Later WE will bring in ALSO some test points (soldering them on the stripboard) for measuring the voltage on different points and we will solder as well on the stripboard some more components to protect out project against short circuits, an electronic fuse with ONLY five (5) components. WE, once finished the above mentioned will then go for mechanical works as the whole will get fit into an enclosure. There will be then a bit drilling, rasping and…

.

Some electronics projects made +/- 25-30 years ago, check video below please 😉 I stopped tinkering around for the peace of our conjugal life, well wife was right! I had to much hobbies; NOW I am retired and I have too much time, SO I started again…

.

.

Keywords necessary for me to create this blog post: Learning about alternative current (AC), Direct current (DC), Zenerdiodes, Voltage regulators, 7809, LM317T, Panelmeter, Digital Voltmeter, testing, measuring, test points, potentiometer, variable resistors, capacitors, electrolytic capacitors, LCD Display…

.


.

GUST-AVRIL2014-800px-2L’auteur Gust MEES est Formateur andragogique / pédagogique TIC, membre du “Comité Conseil” de “Luxembourg Safer Internet” (LuSI), appelé maintenant BEESECURE, partenaire officiel (consultant) du Ministère de l’éducation au Luxembourg du projet  ”MySecureIT“, partenaire officiel du Ministère du Commerce au Luxembourg du projet ”CASES” (Cyberworld Awareness and Security Enhancement Structure). L’auteur était aussi gagnant d’un concours en électronique en 1979 ( Pays germaniques ) et voyait son projet publié dans le magazine électronique “ELO”.


The author Gust MEES is ICT Course Instructor, ”Member of the Advisory Board” from “Luxembourg Safer Internet” (LuSI), BEESECURE, Official Partner (Consultant) from the Ministry of Education in Luxembourg, project “MySecureIT“, Official Partner from the Ministry of Commerce in Luxembourg, project “CASES” (Cyberworld Awareness and Security Enhancement Structure).

The author was also a winner of an electronics contest (Germanic countries) in 1979 and got his project published in the “Electronics Magazine ELO”).

.

Stay tuned for next blog post(s) 😉

.

.
.

.

.

 

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,